Method of Test for SAND EQUIVALENT OF SOILS AND FINE AGGREGATE

DOTD Designation: TR 120-03 (AASHTO T 176)

I. Scope

- A. This method of test is designed to determine the relative proportion of dust or clay material in fine aggregates using a mechanical shaker.
- B. Reference Documents
 - DOTD TR 108 Splitting and Quartering Samples.
 - DOTD TR 411 Dry Preparation of Disturbed Samples for Test.
 - AASHTO T 176 Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test.

II. Apparatus

- A. Sand Equivalent Test Equipment graduated plastic cylinder, rubber stopper, irrigator tube, weighted foot assembly, and siphon assembly, with mechanical shaker, all conforming to specifications, dimensions, and setup as designated in AASHTO T 176.
- B. Holding cans four 6-oz. No. 2 cans.
- C. **Tin cans** specimen cups, DOTD Stock No. 16-16-2320.
- D. Sample splitter.
- E. Catch pan.
- F. Oven capable of maintaining a temperature of 110 ± 5 °C (230 ± 9 °F).
- G. Straightedge.
- H. Asphaltic Concrete Job Mix Formula –
 DOTD Form No. 03-22-0730. (Figure 1)
- Sand Equivalent for Asphaltic Concrete Sands – DOTD Form No. 03-22-0747. (Figure 2)
- J. Thermal gloves, apron, and other tools
 for handling hot materials.
- K. Calcium Chloride Stock Solution a stock solution of Calcium Chloride, formulated containing formaldehyde, glutaraldehyde or Kathon CG/ICP, prepared in accordance with AASHTO T 176. This soulution may be

purchased directly from commercial sources, rather than mixed from individual components.

III. Health Precautions

Handling heated materials and equipment can cause severe burns. Always use proper caution and safety equipment when working with hot material or equipment.

IV. Sample Preparation

- A. Obtain approximately 14 kg (30 lb) each of fine and coarse sand.
- B. Place the fine and coarse sand in the oven and dry to constant weight at 110°C (230°F).
- Note 1: Constant weight for drying purposes is defined as less than 0.1% weight loss between successive weighings no less than 5 minutes apart.
 - C. Prepare both fine and coarse sands in accordance with DOTD TR 411 by pulverizing all lumps of fine-grained soil material to pass the 4.25 mm (No. 4) sieve. Discard all material retained on the No. 4 sieve.
 - D. Split the material passing the 4.25 mm (No. 4) sieve to approximately 1 kg (2.20 lb) each of fine and coarse sand in accordance with DOTD TR 108.
 - E. Combine and thoroughly blend the fine and coarse sands in the same proportions as the bin percentages from the JMF based on total aggregate to create approximately 1 kg (2.20 lb) of blended material, in accordance with Steps VI.A and B.
 - F. Split the 1 kg (2.20 lb) blended material obtained from Step E to obtain four test specimens weighing approximately 250 g (0.55 lb). Put

- each of the test specimens into a No. 2 holding can with a sample identification marked on the side.
- G. Place three of the four specimens obtained in Step F into 85 mL (3-oz) specimen cups. While filling each specimen cup, tap the bottom of the specimen cup on the worktable to consolidate the material. Allow the material to overflow the specimen cups.
- H. Strike off the material to the top of the cups with the straightedge over a catch pan. Return extra material to the holding can.
- Note 2: The fourth test specimen is used as a reserve, if a clear clay reading cannot be obtained on any of the three original specimens.

V. Calcium Chloride Working Solution Preparation

Prepare a working solution of calcium chloride by diluting 85 ± 5 mL of the stock calcium chloride solution with distilled water to 3.8 L (1gal).

Note 3: The working calcium chloride solution should be discarded after it is no longer a clear, transparent liquid free of biological growth and new solution mixed.

VI. Procedure

Note 4: When performing this test in rapid sequence, proper time references must be established. You must allow enough time between each test specimen in order to be able to mechanically shake one test specimen before the 10-minute soaking period has expired on the next test specimen. If a complete set of 3 specimens is to be run, the recommended time period between test specimens is 3 minutes. If each test specimen is to be individually completed before the next one is begun, the time sequence is not necessary.

- Note 5: Perform this test in a vibration free location; vibrations may cause the suspended material to settle at a rate greater than normal.
 - A. Pour calcium chloride (CaCl₂) working solution into each of three plastic cylinders filling to 101.6 \pm 2.5 mL (4 \pm 0.1 in.), reading at the bottom of the meniscus.
 - B. Pour the test specimen from the sample cup through a funnel into the plastic cylinder.
 - C. Tap the bottom of the cylinder sharply on the heel of the hand until the solution penetrates the test specimen and air bubbles stop. Record as Time Soaking Period Started on the worksheet.
 - D. Allow the test specimen to soak for 10 ± 1 minute.
 - E. At the end of the 10-minute soaking period, place a rubber stopper over the top of the plastic cylinder.
 - F. Agitate the test specimen by vigorously shaking the cylinder around the horizontal pivot point, making sure that the test specimen is dislodged from the bottom and thoroughly mixed with the water.
 - G. Place the cylinder in the mechanical shaking machine; set the time at 45 ± 1 second and turn on the machine.
 - H. After completion of the shaking operation, set the cylinder upright on the working table and remove the rubber stopper. Using the CaCl2 working solution, wash the fines from the rubber stopper back into the cylinder.
 - Insert the irrigator tube into the cylinder and, using the CaCl₂ working solution, wash the material from the cylinder walls while lowering the irrigator toward the bottom of the cylinder.
 - J. Force the irrigator tube through the material to the bottom of the cylinder by applying a light stabbing and twisting action while the working solution flows from the holes in the sides of the irrigator tip. Continue to

- apply the stabbing and twisting action while flushing the fines upward.
- K. Raise the irrigator slowly without shutting off the flow. Regulate the flow just before the irrigator is entirely withdrawn and adjust the final level to 381 ± 2.4 mm (15 ± 0.1 in.), reading the bottom of the meniscus. Record as **Time Sedimentation Period Started** on the worksheet.
- L. Allow the cylinder and contents to stand undisturbed on a vibration free location for a 20 min \pm 15 sec sedimentation period. The time will begin with removal of the irrigator tube.
- M. After the 20-min sedimentation period has elapsed and a clear line of demarcation has formed between the test specimen and the clear liquid, read and record the level of the top of the clay suspension as Clay Reading, B, on the worksheet.
- N. If no clear line of demarcation has formed at the end of the specified 20minute sedimentation period, allow the sample to stand undisturbed for a maximum of 30 minutes until a clav reading can be obtained. Immediately read and record the level of the top of suspension. the clay Ιf total sedimentation time exceeds 30 minutes, rerun the test using the fourth sample. If two or more samples do not settle, rerun the test using three new individual samples of the same material.
- After the clay reading has been obtained, obtain the sand reading by using a weighted foot assembly.
 - 1. When using the weighted foot assembly with the sand indicator on the rod of the assembly, place the assembly over the cylinder and gently lower the assembly toward the sand. Do not allow the indicator to hit the mouth of the cylinder while the assembly is being lowered. When the weighted foot comes to rest on the sand, tip the assembly toward the graduations on the cylinder until the indicator touches the side of

- the cylinder. Subtract 25 mm (10 in.) from the level indicated by the extreme top edge of the indicator and record this value on the worksheet as **A**.
- 2. If an older model weighted foot assembly with centering screws is used, keep one of the centering screws in contact with the cylinder wall near the graduations so that it can be seen at all times while the assembly is being lowered. When the weighted foot has come to rest on the sand, read the level of the centering screw and record this value on the worksheet as A.
- P. If clay or sand readings fall between 0.1 in. graduations, record the level of the next higher 0.1 in. graduation as the reading.
- Q. Repeat Steps V.B. P for test specimens two and three.

VII. Calculations

- A. Calculate the portions of coarse sand to fine sand in the bin percentages from the JMF for the composite.
 - Calculate the total combined sand from the JMF, T, to the nearest 0.1% using the following formula:

$$T = F + C$$

where:

F = fine sand from JMF, %
C = coarse sand from JMF, %

example:

$$F = 8.0$$
 $C = 24.0$
 $T = 8.0 + 24.0$

$$T = 32.0\%$$

- 2. Calculate the percentage of fine and coarse sand in the composite.
 - a. Calculate the percentage of fine sand for the composite, **D**,

to the nearest percent using the following formula:

$$D = \frac{F}{T} \times 100$$

where:

F = fine sand from JMF, %
T = total combined sand
from JMF, %
100 = constant to convert
decimal to percent

example:

$$F = 8.0$$

 $T = 32.0$

$$D = \frac{8.0}{32.0} \times 100$$

$$= 0.2500 \times 100$$

$$D = 25\%$$
 fine sand

b. Calculate the percentage of coarse sand for the composite,
 E, to the nearest percent using the following formula:

$$E = \frac{C}{T} \times 100$$

where:

C = coarse sand from JMF, % T = total combined sand from JMF, %

example:

$$C = 24.0$$

$$T = 32.0$$

$$E = \frac{24.0}{32.0} \times 100$$

$$= 0.7500 \times 100$$

$$E = 75\%$$
 coarse sand

- B. Calculate the weights of fine and coarse sand to be used to blend a representative composite sand material.
 - 1. Calculate the weight of fine sand for composite, **WF**, to the nearest gram using the following formula:

$$WF = \frac{S \times D}{100}$$

where:

S = weight of blended sand from Step IV.E, g D = fine sand for composite, % 100 = constant

example:

S = 1000 g
D = 25%

$$WF = \frac{1000 \times 25}{100}$$

$$= \frac{25000}{100}$$

$$WF = 250 g$$

Calculate the weight of coarse sand for the composite, WC, to the nearest gram using the following formula:

$$WC = \frac{S \times E}{100}$$

where:

S = weight of blended sand from Step IV.E, g E = coarse sand for composite, % 100 = constant

$$C = \frac{SE_1 + SE_2 + SE_3}{3}$$

example:

$$S = 1000 \text{ g}$$

$$E = 75 \%$$

$$WC = \frac{1000 \times 75}{100}$$

$$= \frac{75000}{100}$$

$$WC = 750 \, g$$

C. Calculate the sand equivalent, **SE**, to the next highest whole number using the following formula:

$$SE = \frac{A}{B} \times 100$$

where:

A = sand reading B = clay reading 100 = constant

example:

A = 2.7
B = 6.7
$$SE = \frac{2.7}{6.7} \times 100$$
$$= 0.429 \times 100$$
$$SE = 40.29 = 41$$

D. Calculate the average sand equivalent value (Avg SE), **C**, to the next highest whole number using the following formula:

SE₁ = sand equivalent for test specimen 1

SE₂ = sand equivalent for test specimen 2

SE₃ = sand equivalent for test specimen 3

3 = constant, number of test specimens

example:

where:

$$SE_1 = 41$$

 $SE_2 = 43$
 $SE_3 = 44$

$$C = \frac{41 + 43 + 44}{3}$$
$$= \frac{128}{3}$$

$$C = 42.7 = 43$$

VIII. Report

Report the individual sand equivalent values for each test specimen and the Average Sand Equivalent Value on the Sand Equivalent for Asphaltic Concrete Sands Worksheet and on the Asphaltic Concrete Job Mix Formula.

IX. Normal Test Reporting Time

Normal testing and reporting time is 2 days.

Louisiana Department of Transportation ASPHALTIC CONCRETE JOB MIX FORMU Metric / English	ULA - 1992 Specifications Ids located on MATT Menu BIOL 7 Mix Code O Z Seq. No. / / 5
CODE SOURCE Asphalt Cement (AC) 3 3 0 AC-30 4 1 1 3 Sunshin Crushed Aggregate 3 5 1 Cr. Grave Alfelli3 Plag. Screenings Alfelli3 Plag. S	PERCENT SP.GRAV. FR. RATE S O S O S O S O S O S O S O S
Contractor's Results	
RECOMMENDED FORMULA LOOSE MIX RESULTS Avg. Limits	Adjustment Factor Tensile Str.,Control, kPa (PSI) Tensile Str.,Ratio (TSR), % Ross Count, % (T 195)
12.5 1/2	Effective AC, % Absorbed AC, % Natural Sands Sand Equivalent Moisture Content of Mix, % Opt. Mixing Temp. C (F) Opt. Compaction Temp.C (F)

Figure 1 DOTD 03-22-0730 1992 Specifications

MATT MENU SELECTION - 31 Louisiana Department of Transportation ASPHALTIC CONCRETE JOB MIX FORMU				
_				
Metric / English (Mor E) Spec Year (2000)	Entry Fields located on MATT Menu			
Proj. No. Plant Code	9/16 Mix Code $2/9$ Mix Use 07			
Seq No. 1 0 0 Plant Type 3 1 = Batch Screenless 2 = Batch Hot Bin 3 = Drum Mixer 4 = Continuous	G _{sb} 2.645 P _s 94.9 P _{ba}			
ADT/Lane Nom. Aggr. Size ACC	Corr.Factor Permeability			
F.A.P No Project Contr	Project Engr			
Code Source	Percent Spec. Grav. Fr.Rate			
Asphalt Cement (AC) 1615181 PG 70-22 M 141/141U1	EAGON 1 151.11 1.03 (1-4)			
Crushed Aggregate 631/ -48" CR. CRAVEL AB31/ C	LOVERNILL PIT 31310161 2:640 31			
Crushed Aggregate 631 - 42" cR. CRAVEL AB31/1C	LOVERNILL PIT 15.11 2,614 3			
Reclaimed Materials				
	LOVERNILL PIT 2141010 2.681			
	MITTING TON PIT B . O 2.650			
Anti-Strip (AS) <u>ADHERE LA 2</u> [5] 7 [3 [0] Lime	ARR-MAZ 0 0 16 JMF Limits: 0.5-0.7			
	16 VERHILL PIT 1/4/0/2/ 2,628			
Other LILL				
TEST PROPERTIE	S			
Contractors Avg. 1 2	3 4 Validation Av g. JMF Limits			
Spec.Grav.(Bulk)				
Theo.Gr (Max G _{mm}) 121 14 16 13				
% Theo.Gravity 912190				
% VMA 7141 3	14.0AIN			
% VFA				
Stability, lb	1200 MIN 8-18			
Flow, 1/100 III.	576			
RECOMMENDED FORMULA LOOSE MIX RESULTS	DEPARTMENT RESULTS			
U.S.Sieve 1 2 Avg. JMF Lim				
2 in. (50 mm)	Adjustment Factor			
1 1/2 in. (37.5 mm)	Tensile Strength, Control, psi			
3/4 in. (19.0 mm) / 0 0 10	Tensile Strength Ratio (TSR), %			
1/2 in. (12.5 mm) 19161 195				
3/8 in. (9.5 mm) [8 6 9 9 9 9 9 9 9 9 9				
No. 8 (2.36 mm) 3 6 3 -				
No. 16 (1.18 mm) 2 6 23 -	29			
No. 30 (600 µm) 1 1 7 1 1 1 1 4 -	1/2			
No. 100 (150 µm)	Sand Equivalent			
No. 200 (75 μm) 4 • 5				
% AC Extract. (3) • 1/2				
% Crushed [18.5] [1.5] [Opundin Mixing Temp. (F)			
%AC (Met/Sc) 151 • 1/1 1 • 1 5.0 •	5.2 Optimum Compaction Temp.(F)			
% AS (Meter) 01.61	Abson Recovery (Poises)			
Submitted for the Contractor By: 10/1814 Contractors Techni				
Proposal Approved (Yes / No) Lab:	Date Prop. Appr:			
Approved By Lab Engr (Yes / No)	Date Approved:			
Specs:20_0_	Date First Used:			
Remarks				
	JECT BY:			

Figure 1A DOTD 03-22-0730 2000 Specifications

		partment of Transportation and Dev. ENT FOR ASPHALTIC CONC. (DOTD TR 120)		DOTD 03-22-0747 Rev. 1/93
Project No. Material Code Date Sampled Quantity Plant Code PO No. dent. Remarks 1	7.5. 92.00.2. 9.1.6.	Lab. No. Submitted By		PURP. CODES 1. Quality Control 2. Verification 3. Acceptance 4. Check 5. Resample 6. Source Approva 7. Design 8. Indep Assuranc
<u></u>				9. Pre Source Test
tem No. 5.0./ ,-	- <i>O.</i> /	pled By: <u>G.R. Smith</u>	Date:	7/20/02
MIX CODE PLANT TYPE (1=BS,	2=BHB, 3=DM, 4=C)		2,9 3	
FINE SAND SOURCE COARSE SAND, % C FINE SAND, % OF C	DF COMPOSITE	TIME SEDIMENTATION PERIOD STARTED 2:18 2:21	TIME SAMPL 2:3 2:4	4.9.3 XXXX XXXX XXXX 3. P Le is read
FINE SAND SOURCE COARSE SAND, % OF C SAND EQUIVALENT, CYLINDER NO.	WHITTINGTON PI	TIME SEDIMENTATION PERIOD STARTED	7.5 2.4 4.3 TIME SAMPI	4.9.3 XXXX XXXX XXXX 3. P Le is read
FINE SAND SOURCE COARSE SAND, % C FINE SAND, % OF C SAND EQUIVALENT, CYLINDER NO. 1 2	WHITTINGTON PI	TIME SEDIMENTATION PERIOD STARTED	TIME SAMPL 2:3 2:4	H 9 3 KXXX
FINE SAND SOURCE COARSE SAND, % C FINE SAND, % OF C SAND EQUIVALENT, CYLINDER NO. 1 2 3	WHITTINGTON PI	TIME SEDIMENTATION PERIOD STARTED 2:18 2:21 2:24	TIME SAMPI 2:3 2:4 2:4 SAND EQU	LE IS READ LE IS READ A A A A A A A A A A A A
FINE SAND SOURCE COARSE SAND, % CO FINE SAND, % OF CO SAND EQUIVALENT, CYLINDER NO. 1 2 3 CYLINDER NO.	WHITTINGTON PI DE COMPOSITE OMPOSITE AVERAGE TIME SOAKING PERIOD STARTED 2:05 2:08 2:1/ SAND READING (A) 2.7 2.9	TIME SEDIMENTATION PERIOD STARTED 2:18 2:21 2:24 CLAY READING (B) 6.7 6.9	TIME SAMPI 2:3 2:4 2:4 2:4	# 9 3
FINE SAND SOURCE COARSE SAND, % CO FINE SAND, % OF CO SAND EQUIVALENT, CYLINDER NO. 1 2 3 CYLINDER NO. 1	WHITTINGTON PI	TIME SEDIMENTATION PERIOD STARTED 2:18 2:21 2:24	TIME SAMPL 2:3 2:4 2:4 2:4 2:4 0.4029 X100 0.4202 X100 0.4337 X100	LE IS READ LE IS READ A A A A A A A A A A A A
FINE SAND SOURCE COARSE SAND, % CO FINE SAND, % OF CO SAND EQUIVALENT, CYLINDER NO. 1 2 3 CYLINDER NO. 1 2 3	WHITTINGTON PI DE COMPOSITE OMPOSITE AVERAGE TIME SOAKING PERIOD STARTED 2:05 2:08 2:1/ SAND READING (A) 2.7 2.9	TIME SEDIMENTATION PERIOD STARTED 2:18 2:24 CLAY READING (B) 6.7 6.9 8.3 SAND EQUIVALENT, AV	TIME SAMPI 2:3 2:4 2:4 SAND EQU (A + B 0.4029 X 100 0.4202 X 100 TOTAL (C) (ERAGE (C + 3)	# 9 3
FINE SAND SOURCE COARSE SAND, % CO FINE SAND, % OF CO SAND EQUIVALENT, CYLINDER NO. 1 2 3 CYLINDER NO. 1 2 3	WHITTINGTON PI DE COMPOSITE OMPOSITE AVERAGE TIME SOAKING PERIOD STARTED 2:05 2:08 2:1/ SAND READING (A) 2.7 2.9 3.6	TIME SEDIMENTATION PERIOD STARTED 2:18 2:21 2:24 CLAY READING (B) 6.7 6.9 8.3 SAND EQUIVALENT, AV	TIME SAMPL 2:3 2:4 2:4 2:4 2:4 0.4029 X100 0.4202 X100 TOTAL (C)	H, 9, 3

Figure 2 DOTD 03-22-0747